Dopamine inhibits pulmonary edema through the VEGF-VEGFR2 axis in a murine model of acute lung injury.
نویسندگان
چکیده
The neurotransmitter dopamine and its dopamine receptor D2 (D2DR) agonists are known to inhibit vascular permeability factor/vascular endothelial growth factor (VEGF)-mediated angiogenesis and vascular permeability. Lung injury is a clinical syndrome associated with increased microvascular permeability. However, the effects of dopamine on pulmonary edema, a phenomenon critical to the pathophysiology of both acute and chronic lung injuries, have yet to be established. Therefore, we sought to determine the potential therapeutic effects of dopamine in a murine model of lipopolysaccharide (LPS)-induced acute lung injury (ALI). Compared with sham-treated controls, pretreatment with dopamine (50 mg/kg body wt) ameliorated LPS-mediated edema formation and lowered myeloperoxidase activity, a measure of neutrophil infiltration. Moreover, dopamine significantly increased survival rates of LPS-treated mice, from 0-75%. Mechanistically, we found that dopamine acts through the VEGF-VEGFR2 axis to reduce pulmonary edema, as dopamine pretreatment in LPS-treated mice resulted in decreased serum VEGF, VEGFR2 phosphorylation, and endothelial nitric oxide synthase phosphorylation. We used D2DR knockout mice to confirm that dopamine acts through D2DR to block vascular permeability in our lung injury model. As expected, a D2DR agonist failed to reduce pulmonary edema in D2DR(-/-) mice. Taken together, our results suggest that dopamine acts through D2DR to inhibit pulmonary edema-associated vascular permeability, which is mediated through VEGF-VEGFR2 signaling and conveys protective effects in an ALI model.
منابع مشابه
Acute Pulmonary Edema Following Administration of Magnesium Sulfate in a Pregnant Patient
Acute pulmonary edema affects 0.08% to 1.5% of women during pregnancy and during the postpartum period, and preeclampsia/eclampsia is a major obstetric cause of acute pulmonary edema. We present a case of a 23-year-old nulliparous woman who was referred to our tertiary medical center for preterm labor and dyspnea. The patient complained of having suddenly developed respiratory distress and a de...
متن کاملDifferential effects of mechanical ventilatory strategy on lung injury and systemic organ inflammation in mice.
Patients with acute respiratory distress syndrome are at increased risk for developing multiorgan system dysfunction. The goal of this study was to establish an in vivo murine model to assess the differential effects of ventilation-protective strategies on the development of acute lung injury and systemic organ inflammation. C57B/6 mice were randomized to mechanical ventilation (MV) with conven...
متن کاملProtective role of vascular endothelial growth factor in endotoxin-induced acute lung injury in mice
BACKGROUND Vascular endothelial growth factor (VEGF), a substance that stimulates new blood vessel formation, is an important survival factor for endothelial cells. Although overexpressed VEGF in the lung induces pulmonary edema with increased lung vascular permeability, the role of VEGF in the development of acute lung injury remains to be determined. METHODS To evaluate the role of VEGF in ...
متن کاملVEGF levels in the alveolar compartment do not distinguish between ARDS and hydrostatic pulmonary oedema.
Although overexpression of vascular endothelial growth factor (VEGF) 165 in the lung causes pulmonary oedema, its role in human acute lung injury (ALI) is unclear. VEGF levels are reported to be lower in bronchoalveolar lavage from ALI patients compared with normals, but these studies did not include a comparably ill control group with noninflammatory pulmonary oedema. The current authors hypot...
متن کاملAngiogenic growth factors in the pathophysiology of a murine model of acute lung injury.
Capillary leakage and alveolar edema are hallmarks of acute lung injury (ALI). Neutrophils and serum macromolecules enter alveoli, promoting inflammation. Vascular endothelial growth factor (VEGF) causes plasma leakage in extrapulmonary vessels. Angiopoietin (Ang)-1 and -4 stabilize vessels, attenuating capillary leakage. We hypothesized that VEGF and Ang-1 and -4 modulate vessel leakage in the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 302 2 شماره
صفحات -
تاریخ انتشار 2012